设向量α=(3sin2x,sinx+cosx),β=(1,sinx-cosx),其中x∈R,函数f(x)=α•β.(1)求f(x)的最小正周期;(2)若f(θ)=3,其中0<θ<π2,求cos(θ+π

题目简介

设向量α=(3sin2x,sinx+cosx),β=(1,sinx-cosx),其中x∈R,函数f(x)=α•β.(1)求f(x)的最小正周期;(2)若f(θ)=3,其中0<θ<π2,求cos(θ+π

题目详情

设向量
α
=(
3
sin2x,sinx+cosx),
β
=(1,sinx-cosx),其中x∈R,函数f(x)=
α
β
.(1)求f(x) 的最小正周期;
(2)若f(θ)=
3
,其中0<θ<
π
2
,求cos(θ+
π
6
)的值.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=
α
β
=
3
sin2x+(sinx+cosx)(sinx-cosx)

=
3
sin2x-cos2x

=2(
3
2
sin2x-class="stub"1
2
cos2x)

=2sin(2x-class="stub"π
6
)

∴T=class="stub"2π
2
=π.即f (x) 的最小正周期为π.
(2)∵f (θ)=
3
,∴2sin(2θ-class="stub"π
6
)=
3
,∴sin(2θ-class="stub"π
6
)=
3
2

∵0<θ<class="stub"π
2
,∴-class="stub"π
6
<2θ-class="stub"π
6
<class="stub"5π
6
,∴2θ-class="stub"π
6
=class="stub"π
3
class="stub"2π
3

解得θ=class="stub"π
4
class="stub"5π
12

∴当θ=class="stub"π
4
时,cos(θ+class="stub"π
6
)
=cos(class="stub"π
4
+class="stub"π
6
)
=cosclass="stub"π
4
cosclass="stub"π
6
-sinclass="stub"π
4
sinclass="stub"π
6
=
6
-
2
4

θ=class="stub"5π
12
时,cos(θ+class="stub"π
6
)
=cosclass="stub"7π
12
=-cosclass="stub"5π
12
=
2
-
6
4

更多内容推荐