如图所示,竖直平面内半圆形管道ADB固定在CD杆上,AB为直径,CD过圆心O且与AB垂直,半圆管道右半BD部分光滑,左半AD部分有摩擦,圆管道半径R=OB=0.2m,E点为圆管道BD中的一-高三物理

题目简介

如图所示,竖直平面内半圆形管道ADB固定在CD杆上,AB为直径,CD过圆心O且与AB垂直,半圆管道右半BD部分光滑,左半AD部分有摩擦,圆管道半径R=OB=0.2m,E点为圆管道BD中的一-高三物理

题目详情

如图所示,竖直平面内半圆形管道ADB固定在CD杆上,AB为直径,CD过圆心O且与AB垂直,半圆管道右半BD部分光滑,左半AD部分有摩擦,圆管道半径R=OB=0.2m,E点为圆管道BD中的一点,OE与CD夹角为θ=60°,两个完全相同的可看作质点的小球,球直径略小于管道内径,小球质量m=0.1kg,g=10m/s2,求:
(1)如图甲所示,当圆管道绕CD杆匀速转动时,要使小球稳定在管道中的E点,角速度ω应该多大?
(2)如图乙所示,圆管道保持静止,在圆管道D点处放置一静止小球,另一小球由静止开始从B端管口放入,该球经过D点时(未与另一小球相碰)对管道的压力?
(3)接(2)问,两球在D点相碰(碰撞时间极短)后粘在一起能运动到最高点F,OF与CD夹角为α=37°,求此过程中摩擦力所做的功?
题型:计算题难度:偏难来源:广东省模拟题

答案

解:(1)小球在E点时受重力和管道的弹力,其合力提供向心力,由牛顿第二定律可得
 


(2)设小球运动到D点时速度为v1,由机械能守恒定律可得


设小球受到管道的弹力为N2,沿半径方向,由牛顿第二定律可得


根据牛顿第三定律,小球过E点时对管道的压力F=1.5N
(3)设碰后瞬间两球的速度为v2,根据动量守恒定律


设摩擦力做功为w,由动能定理可得
 

更多内容推荐