优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.-数学
在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.-数学
题目简介
在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.-数学
题目详情
在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.
题型:解答题
难度:中档
来源:不详
答案
∵在△ABC中,acosB=bcosA,
∴
class="stub"a
b
=
class="stub"cosA
cosB
,又由正弦定理可得
class="stub"a
b
=
class="stub"sinA
sinB
,
∴
class="stub"cosA
cosB
=
class="stub"sinA
sinB
,sinAcosB-cosAsinB=0,sin(A-B)=0.
由-π<A-B<π 得,A-B=0,
则△ABC为等腰三角形,
上一篇 :
要得到函数y=2cos(x+π6)sin(π3-
下一篇 :
设函数f(x)=sinxcosx-3cos(x+
搜索答案
更多内容推荐
设函数f(x)=sin2x+3sinxcosxx∈R(1)求f(x)的最小正周期和值域;(2)将函数y=f(x)的图象按向量a=(-π6,12)平移后得到函数y=g(x)的图象,求函数y=g(x)的单
在△ABC中,三条边长成等差数列且最小角的正弦值与最大角的正弦值之比为3:5,则△ABC是()A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形-数学
在△ABC中,角A、B、C的对边分别为a、b、c,若AB•AC=BA•BC(1)判断△ABC的形状(2)若cosC=725,求cosA的值.-数学
已知函数f(x)=23sin(x-π6)cos(x-π6)-1+2cos2(x-π6)(1)求f(x)的最大值及相应的x的取值集合;(2)求f(x)的单调递增区间.-数学
函数f(x)=(sinx-cosx)2的最小正周期为______.-数学
在△ABC中,已知a-b=c(cosB-cosA),则△ABC的形状为______.-数学
在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,若a2<(b+c)(c-b),则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形-数学
已知:①tan10°•tan20°+tan20°•tan60°+tan60°•tan10°=1,②tan5°•tan10°+tan10°•tan75°+tan75°•tan5°=1,则tan8°•__
一个三角形三条边之比为6:8:9,那么该三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.三内角之比为6:8:9-数学
已知双曲线x2a2-y2b2=1和椭圆x2m2+y2b2=1(a>0,m>b>0)的离心率之积大于1,那么以a,b,m为边的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形-数学
已知点p(x,y)是圆x2+y2-2y=0的动点,则3x+4y的最大值______.-数学
已知函数f(x)=2sinx4cosx4+3cosx2.(1)求f(x)的最小正周期;(2)若0≤x≤π,求f(x)的最大值和最小值.-数学
已知函数f(x)=8ln(1+ex)-9x.(1)证明:函数f(x)对于定义域内任意x1,x2(x1≠x2)都有:f(x1+x22)<f(x1)+f(x2)2成立.(2)已知△ABC的三个顶点A、B、
在△ABC中,角A,B,C的对边分别为a,b,c,其中c边最长,并且sin2A+sin2B=1,则△ABC的形状为______.-数学
在△ABC中,三个内角A,B,C成等差数列,b2=ac,则△ABC的形状是______.-数学
函数y=cos2xcosπ5-2sinxcosxsin6π5的递增区间是()A.[kπ+π10,kπ+3π5](k∈Z)B.[kπ-3π20,kπ+7π20](k∈Z)C.[2kπ+π10,2kπ+3
已知函数f1(x)=3sin(2x-π3),f2(x)=4sin(2x+π3),则函数f(x)=f1(x)+f2(x)的振幅为()A.13B.5C.7D.13-数学
设a、b、c分别是△ABC三个内角∠A、∠B、∠C的对边,若向量m=(1-cos(A+B),cosA-B2),n=(58,cosA-B2)且m•n=98,(1)求tanA•tanB的值;(2)求abs
设函数f(x)=2sinxcosx-cos(2x-π6).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[0,2π3]时,求函数f(x)的最大值及取得最大值时的x的值.-数学
已知函数f(x)=2sin2(π4-x)-23cos2x+3(I)求f(x)最小正周期和单调递减区间;(II)若f(x)<m+2在x∈[0,π6]上恒成立,求实数m的取值范围.-数学
已知函数f(x)=2cos2x+2asinxcosx-1的图象关于直线x=π8对称.(Ⅰ)求a的值;(Ⅱ)把函数y=f(x)的图象按向量a平移后与函数g(x)=2sin2x-1的图象重合,求:a的坐标
在△ABC中,已知a=2,b=3,C=60°,试证明△ABC为锐角三角形.-数学
已知函数f(x)=cos(π3+x)cos(π3-x)-sinxcosx+14(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间.-数学
方程sinx+cosx=22在区间[0,4π]上的所有的解的和是______.-数学
cos(-300°)的值是()A.-12B.12C.-32D.32-数学
已知三角形的三边长分别为4、6、8,则此三角形为()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形-数学
已知向量a=(1-tanx,1),b=(1+sin2x+cos2x,-3),记f(x)=a•b(1)求f(x)的值域及最小正周期;(2)若f(α2)-f(α2+π4)=6,其中α∈(0,π2),求角α
我们知道,在△ABC中,若c2=a2+b2,则△ABC是直角三角形.若cn=an+bn(n>2),则△ABC是______三角形.(填“锐角”、“钝角”、“直角”)-数学
在△ABC中,已知y=2+cosCcos(A-B)-cos2C.(1)若△ABC是正三角形,求y的值;(2)若任意交换A,B,C的位置,y的值是否会发生变化?试证明你的结论;(3)求y的最大值,并判断
若△ABC的三边长分别为a,b,c,且a4+b4=c4,则△ABC的形状为()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定-数学
sin(-19π6)的值等于______.-数学
设函数f(x)=2cos2x+23sinxcosx+m(x∈R)(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈[0,π2],是否存在实数m,使函数f(x)的值域恰为[12,72]?若存在,请求出m的取
已知函数f(x)=2cosx•sin(x-π6)-12].(Ⅰ)求函数f(x)的最小值和最小正周期;(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c且c=3,角C满足f(C)=0,若sinB=2
在△ABC中,∠A,∠B,∠C所对边分别为a,b,c,若acosA=bcosB,则△ABC的形状是______.-数学
不等式4≤3sin2x-cos2x-4cosx+a≤20恒成立,求a的取值范围.-数学
已知函数f(x)=3sinxcosx-cos2x+12(x∈R).则函数f(x)在区间[0,π4]上的值域为______.-数学
若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC为______(填锐角三角形、直角三角形、钝角三角形.)-数学
已知f(x)=2cos2x+23sinxcosx+a(x∈R)(a为常数)(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递增区间;(Ⅲ)若f(x)的最大值与最小值之和为3,求a的值.-数学
在△ABC中,设角A、B、C的对边分别为a、b、c,且cos2A2=b+c2c,则△ABC一定是()A.等边三角形B.直角三角形C.等腰直角三角形D.无法确定-数学
定义:关于x的两个不等式f(x)<0和g(x)<0的解集分别为(a,b)和(1b,1a),则称这两个不等式为对偶不等式.如果不等式x2-43xcos2θ+2<0与不等式2x2+4xsin2θ+1<0为
已知函数f(x)=2acos2x+bsinxcosx-32,且f(0)=32,f(π4)=12.(1)求f(x)的最小正周期;(2)求f(x)的单调递减区间;(3)函数f(x)的图象经过怎样的平移才能
已知cos31°=m,则sin239°tan149°=()A.1-m2mB.m2-1mC.1-m2D.-1-m2-数学
已知向量m=(2sinx2,1),n=(cosx2,1),设函数f(x)=m•n-1.(1)求函数y=f(x)的值域;(2)已知△ABC为锐角三角形,A为△ABC的内角,若f(A)=35,求f(2A-
已知函数f(x)=-23sin2x+sin2x+3.(1)求函数f(x)的单调递减区间;(2)当x∈[0,π]时,求f(x)的最大值;(3)求满足f(a-x)=f(a+x)(x∈R)的所有的常数a.-
函数f(x)=sinx•sin(π2-x),(0<x<π)的单调递减区间为______.-数学
已知函数f(x)=3sinxcosx-cos2x-12,x∈R.(Ⅰ)求函数f(x)的最小值和最小正周期;(Ⅱ)已知△ABC内角A,B,C的对边分别为a,b,c,且c=3,f(C)=0,若向量m=(1
函数f(x)=sin2x+3sinxcosx在区间[π4,π2]上的最大值是()A.1B.1+32C.32D.1+3-数学
f(x)=sinnπ4(n∈N*),则f(1)+f(2)+f(3)+…+f(2009)=______.-数学
在△ABC中,若b=2c•cosA,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形-数学
已知a=(sin(π6x-π3),2),b=(2,sin(π6x+π3)+2),f(x)=a•b(1)求函数y=f(x)的解析式;(2)若y表示某海岸港口的深度(米),x表示一天内时间(小时);当水深
返回顶部
题目简介
在三角形ABC中,若acosB=bcosA,试判断这个三角形的形状.-数学
题目详情
答案
∴
∴
由-π<A-B<π 得,A-B=0,
则△ABC为等腰三角形,