设S=1+112+122+1+122+132+…+1+119992+120002,求不超过S的最大整数[S].-数学

题目简介

设S=1+112+122+1+122+132+…+1+119992+120002,求不超过S的最大整数[S].-数学

题目详情

设S=
1+
1
12
+
1
22
+
1+
1
22
+
1
32
+…+
1+
1
19992
+
1
20002
,求不超过S的最大整数[S].
题型:解答题难度:中档来源:不详

答案

1+class="stub"1
n2
+class="stub"1
(n+1)2
=
n2+2n+1
n2
-class="stub"2n
n2
+class="stub"1
(n+1)2

=
(class="stub"n+1
n
)
2
-2•class="stub"n+1
n
•class="stub"1
n+1
+(class="stub"1
n+1
)
2
 

=
(class="stub"n+1
n
-class="stub"1
n+1
2

=|class="stub"n+1
n
-class="stub"1
n+1
|,
=1+class="stub"1
n
-class="stub"1
n+1

∴S=1+class="stub"1
1
-class="stub"1
2
+1+class="stub"1
2
-class="stub"1
3
+…+1+class="stub"1
1999
-class="stub"1
2000
=2000-class="stub"1
2000

∴[S]=1999.
∴不超过S的最大整数[S]为1999.

更多内容推荐