如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分规定:线上各点不属于任何部分,点动点P若在某个部分时,连接PA、PB、构成∠PAC,∠APB、∠PBD三-七

题目简介

如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分规定:线上各点不属于任何部分,点动点P若在某个部分时,连接PA、PB、构成∠PAC,∠APB、∠PBD三-七

题目详情

如图所示,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分
规定:线上各点不属于任何部分,点动点P若在某个部分时,连接PA、PB、构成∠PAC,∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立,若不成立,请写出∠APB、∠PAC、∠PBD之间存在的一个关系式.
题型:解答题难度:中档来源:湖北省期中题

答案

(1)证明:过P作PQ∥AC,则∠APQ=∠PAC.            
∵AC∥BD,
∴PQ∥BD.
∴∠BPQ=∠PBD.    
∴∠APQ+∠BPQ=∠PAC+∠PBD.
即∠APB=∠PAC+∠PBD.                      
(2)解:当动点P在第②部分时,结论∠APB=∠PAC+∠PBD不成立,
过P作PQ∥AC,
∵AC∥BD,
∴AC∥PQ∥BD,
∴∠APQ+∠PAC=180°,∠QPB+∠PBD=180°,
∴∠PAC+∠APB+∠PBD=360°,
即其存在的关系式是∠PAC+∠PBD=360°﹣∠APB.  

更多内容推荐