在长方体中,为线段中点.(1)求直线与直线所成的角的余弦值;(2)若,求二面角的大小;(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.-高二数学

题目简介

在长方体中,为线段中点.(1)求直线与直线所成的角的余弦值;(2)若,求二面角的大小;(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.-高二数学

题目详情

在长方体中,为线段中点.

(1)求直线与直线所成的角的余弦值;
(2)若,求二面角的大小;
(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

(1);(2);(3)

试题分析:(1)以点为原点,建立空间直角坐标系,写出各点的坐标,从而可求出的坐标,因为,所以直线与直线所成的角为,其余弦值;(2)分别求出平面和平面的法向量,求出法向量所成的角,转化为二面角的平面角;(3)假设在棱上存在一点,使得平面,则,设,则垂直于平面的法向量,从而求出,即存在点,使平面
试题解析:
(1)以点为原点,分别以所在的直线为轴建立空间直角坐标系,
 ,
 ,
所成角的余弦值为0 .
(2) 连接,由长方体,得 ,
,,由(1)知,故平面. 所以是平面的法向量,而,
,设平面的法向量为,则有,取,可得
 ,所以二面角是 .
(3) 假设在棱上存在一点,使得平面,则,设,平面的法向量为则有,取,可得
要使平面,只要 ,
,又平面,
存在点使平面,此时.

更多内容推荐