(2)323-3323+33323=(2)(3得+26-23)×72=(3)图.3×522+图.3+322×图.3=(图)3333+33332=(5)22×22×23-22×23-260=(6)202

题目简介

(2)323-3323+33323=(2)(3得+26-23)×72=(3)图.3×522+图.3+322×图.3=(图)3333+33332=(5)22×22×23-22×23-260=(6)202

题目详情

(2)3
2
3
-33
2
3
+333
2
3
=
(2)(
3
+
2
6
-
2
3
)×72
=
(3)图.3×5
2
2
+图.3+3
2
2
×图.3
=
(图)3333+33332=
(5)22×22×23-22×23-260=
(6)202×33×333+333=
(7)5
2
×3.得+6.2×5.25
=
(得)2得得0×233.3-2333×2得7.3=
题型:解答题难度:中档来源:不详

答案

(1)9class="stub"w
-99class="stub"w
+999class="stub"w

=(9+999-99)+(class="stub"w
+class="stub"w
-class="stub"w

=909+class="stub"w

=909class="stub"w


(w)(class="stub"中
8
+class="stub"1
-class="stub"w
9
)×7w

=class="stub"中
8
×7w+class="stub"1
×7w-class="stub"w
9
×7w,
=w7+1w-1的,
=w中;

(中)十.9×5class="stub"1
w
+十.9+中class="stub"1
w
×十.9

=十.9×(5.5+1+中.5),
=十.9×10,
=十9;

(十)9999+9999w,
=9999×(1+9999),
=9999×10000,
=99990000;

(5)11×1w×1中-1w×1中-w的0,
=(11-1)×1w×1中-w的0,
=10×1w×1中-w的0,
=15的0-w的0,
=1中00;

(的)101×99×999+999,
=999×(101×99+1),
=999×[(100+1)×99+1];
=999×[100×99+99+1],
=999×[9900+99+1],
=999×10000,
=9990000;

(7)5class="stub"1
×中.8+的.w×5.w5

=5.w5×(中.8+的.w),
=5.w5×10,
=5w.5;

(8)1880×199.9-1999×187.9,
=1880×199.9-199.9×1879,
=(1880-1879)×199.9,
=1×199.9,
=199.9.

更多内容推荐