给定正整数n和正数M,对于满足条件a12+an+12≤M的所有等差数列a1,a2,a3,….,试求S=an+1+an+2+…+a2n+1的最大值.-数学

题目简介

给定正整数n和正数M,对于满足条件a12+an+12≤M的所有等差数列a1,a2,a3,….,试求S=an+1+an+2+…+a2n+1的最大值.-数学

题目详情

给定正整数 n 和正数 M,对于满足条件a12+an+12≤M 的所有等差数列 a1,a2,a3,….,试求 S=an+1+an+2+…+a2n+1的最大值.
题型:解答题难度:中档来源:不详

答案

设公差为d,an+1=a,
则S=an+1+an+2+…a2n+1是以an+1=a为首项,d为公差的等差数列的前(n+1)项和,
所以S=an+1+an+2+…a2n+1=(n+1)a+
n(n+1)
2
d.
同除以(n+1),得 a+class="stub"nd
2
=class="stub"S
n+1

则M≥a12+an+12=(α-nd)2+a2=
class="stub"4
10
(a+class="stub"nd
2
)2+class="stub"1
10
(4a-3nd)2
class="stub"4
10
(class="stub"S
n+1
)2

因此|S|≤
10
2
(n+1)
M

且当 a=class="stub"3
10
M
,d=class="stub"4
10
•class="stub"1
n
M
 时,
S=(n+1)〔class="stub"3
10
M
+class="stub"n
2
•class="stub"4
10
•class="stub"1
n
M

=(n+1)class="stub"5
10
M
=
10
2
(n+1)
M

由于此时4a=3nd,故 a12+an+12=class="stub"4
10
(class="stub"S
n+1
)2
=class="stub"4
10
•class="stub"10
4
M=M

所以,S的最大值为
10
2
(n+1)
M

更多内容推荐