先观察下列等式,然后用你发现的规律解答下列问题.11×2=1-12;12×3=12-13;13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-1

题目简介

先观察下列等式,然后用你发现的规律解答下列问题.11×2=1-12;12×3=12-13;13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-1

题目详情

先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)计算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=______;
(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=______;(用含有n的式子表示)
(3)探究并计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2007×2009
题型:解答题难度:中档来源:不详

答案

(1)class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+…+class="stub"1
9×10

=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
9
-class="stub"1
10

=1-class="stub"1
10

=class="stub"9
10


(2)class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+…+class="stub"1
n(n+1)

=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+…+class="stub"1
n
-class="stub"1
n+1

=1-class="stub"1
n+1

=class="stub"n
n+1


(3)class="stub"1
1×3
+class="stub"1
3×5
+class="stub"1
5×7
+…+class="stub"1
2007×2009

=class="stub"1
2
×(1-class="stub"1
3
+class="stub"1
3
-class="stub"1
5
+…+class="stub"1
2007
-class="stub"1
2009

=class="stub"1
2
×(1-class="stub"1
2009

=class="stub"1
2
×class="stub"2008
2009

=class="stub"1004
2009

故答案为:class="stub"9
10
class="stub"n
n+1

更多内容推荐