已知ax2+bx+1与2x2-3x+1的积不含x3和x项,试计算下面代数式的值.1(a-1)(b-1)+1ab+1(a+1)(b+1)+1(a+2)(b+2)+…+1(a+2010)(b+2010).

题目简介

已知ax2+bx+1与2x2-3x+1的积不含x3和x项,试计算下面代数式的值.1(a-1)(b-1)+1ab+1(a+1)(b+1)+1(a+2)(b+2)+…+1(a+2010)(b+2010).

题目详情

已知ax2+bx+1与2x2-3x+1的积不含x3和x项,试计算下面代数式的值.
1
(a-1)(b-1)
+
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2010)(b+2010)
题型:解答题难度:中档来源:不详

答案

(ax2+bx+1)•(2x2-3x+1),
=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1,
=2ax4+(-3a+2b)x3+(a-3b+2)x2+(b-3)x+1,
∵不含x3和x项,
∴b-3=0,-3a+2b=0,
∴b=3,a=2,
把a=2,b=3代入得:
class="stub"1
(a-1)(b-1)
+class="stub"1
ab
+class="stub"1
(a+1)(b+1)
+class="stub"1
(a+2)(b+2)
+…+class="stub"1
(a+2010)(b+2010)

=class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+class="stub"1
4×5
+…+class="stub"1
2012×2013

=class="stub"1
1
-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+class="stub"1
4
-class="stub"1
5
+…+class="stub"1
2012
-class="stub"1
2013

=1-class="stub"1
2013

=class="stub"2012
2013

更多内容推荐