请先阅读下列一组内容,然后解答问题:先观察下列等式:11×2=1-12,12×3=12-13,13×4=13-14…19×10=19-110将以上等式两边分别相加得:11×2+12×3+13×4+…+

题目简介

请先阅读下列一组内容,然后解答问题:先观察下列等式:11×2=1-12,12×3=12-13,13×4=13-14…19×10=19-110将以上等式两边分别相加得:11×2+12×3+13×4+…+

题目详情

请先阅读下列一组内容,然后解答问题:
先观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
9×10
=
1
9
-
1
10

将以上等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)
=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

然后用你发现的规律解答下列问题:
(1)猜想并写出:
1
n(n-1)
=______;
(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
=______;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=______;
(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014
题型:解答题难度:中档来源:不详

答案

(1)根据题意得:class="stub"1
n(n-1)
=class="stub"1
n-1
-class="stub"1
n

(2)①原式=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+…+class="stub"1
2010
-class="stub"1
2011
=1-class="stub"1
2011
=class="stub"2010
2011

②原式═1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+…+class="stub"1
n
-class="stub"1
n+1
=1-class="stub"1
n+1
=class="stub"n
n+1

(3)原式=class="stub"1
2
×(class="stub"1
2
-class="stub"1
4
+class="stub"1
4
-class="stub"1
6
+…+class="stub"1
2012
-class="stub"1
2014
)=class="stub"1
2
×(class="stub"1
2
-class="stub"1
2014
)=class="stub"503
2014

故答案为:(1)class="stub"1
n(n-1)
=class="stub"1
n-1
-class="stub"1
n
;(2)①class="stub"2010
2011
;②class="stub"n
n+1

更多内容推荐