优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 1932年,劳伦斯和利文斯顿设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应-高三物理
1932年,劳伦斯和利文斯顿设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应-高三物理
题目简介
1932年,劳伦斯和利文斯顿设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应-高三物理
题目详情
1932年,劳伦斯和利文斯顿设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为B
m
、f
m
,试讨论粒子能获得的最大动能E
km
。
题型:计算题
难度:偏难
来源:专项题
答案
解:(1)设粒子第1次经过狭缝后的半径为r1,速度为v1
qU=
qv1B=m
解得r1=
同理,粒子第2次经过狭缝后的半径r2=
则r2:r1=
:1
(2)设粒子到出口处被加速了n圈
2nqU=
mv2
qvB=m
T=
t=nT
解得
(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即f=
当磁感应强度为Bm时,加速电场的频率应为fBm=
粒子的动能Ek=
mv2
当fBm≤fm时,粒子的最大动能由Bm决定
qvmBm=
解得Ekm=
当fBm≥fm时,粒子的最大动能由fm决定
vm=2πfmR
解得Ekm=2π2m
R2
上一篇 :
质谱仪原理如图所示,a为粒子加
下一篇 :
如图所示的两物块,甲带正电,乙是
搜索答案
更多内容推荐
电子的速率v=3.0×106m/s,沿着与磁场垂直的方向射入B=0.10T的匀强磁场中,它受到的洛伦兹力大小为______N.-高二物理
如图,在矩形区域abcd区域中,分布有垂直纸面向外的匀强磁场,ab长为L,在ab的中点P处有一电子发射源,出射电子速率取一切可能值,所有电子出射的速度方向均与ab成30°,下列说-高二物理
边长为a的正方形,处于有界磁场如图所示,一束电子以水平速度射入磁场后,分别从A处和C处射出,则vA:vC=__________;所经历的时间之比tA:tC=___________-高二物理
(8分)如图所示,直线MN上方为磁感应强度为B的足够大的匀强磁场.一电子(质量为m、电荷量为e),以v的速度从点O与MN成30°角的方向射入磁场中,求:(1)电子从磁场中射出时距O点多-高二物理
(10分)如图所示是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。分-高二物理
如图是荷质比相同的a、b两粒子从O点垂直匀强磁场进入正方形区域的运动轨迹,则A.a的质量比b的质量大B.a带正电荷、b带负电荷C.a在磁场中的运动速率比b的大D.a在磁场中的运动时-高三物理
如图所示,在“研究影响通电导体所受磁场力的因素”的实验中,要使导体棒的悬线向右的摆角增大,以下操作中可行的是()A.增大导体棒中的电流B.减少磁铁的数量C.颠倒磁铁磁极的上-高二物理
在北半球,地磁场磁感应强度的一个分量竖直向下(以“×”表示).如果你家中电视机显像管的位置恰好处于南北方向,那么由南向北射出的电子束在地磁场的作用下将向哪个方向偏转()A-高二物理
两个相同的回旋加速器,分别接在加速电压U1和U2的高频电源上,且U1>U2,有两个相同的带电粒子分别在这两个加速器中运动,设两个粒子在加速器中运动的时间分别为t1和t2,获-高三物理
质谱仪是一种测定带电粒子质量和分析同位素的重要工具.它的构造原理如图所示,离子源S产生电荷量为q的某种正离子,离子产生时的速度很小,可以看作是静止的,离子经过电压U-高二物理
回旋加速器是利用较低电压的高频电源,使粒子经多次加速获得巨大速度的一种仪器,工作原理如图。下列说法正确的是()A.粒子在磁场中做匀速圆周运动B.粒子由A0运动到A1比粒子由-高二物理
(8分)如图所示,回旋加速器的半径为R,匀强磁场的磁感应强度为B,高频电场的电压为U,S0为粒子源,S’为引出口.若被加速的粒子质量为m,电荷量为q,设带电粒子质量不变,且不-高二物理
一带电粒子平行磁场方向射入只存在匀强磁场的某区域中(不计重力),则()A.带电粒子一定做匀速直线运动B.带电粒子一定做匀变速直线运动C.带电粒子一定做类平抛运动D.带电粒子一-高二物理
下列说法中正确的是()A.带电粒子在磁场中运动时,只有当其轨迹为圆时才有洛伦兹力不对带电粒子做功B.不论带电粒子在磁场中做何运动,洛伦兹力均不对带电粒子做功C.因为安培力-高二物理
如图所示,一电子飞入匀强磁场,速度方向向左,关于电子受力方和说法正确的是()A.向左B.向右C.向上D.向下-高二物理
如右图所示,水平直导线中通有稳恒电流I,导线的正上方处有一电子初速度v0,其方向与电流方向相同,以后电子将()A.沿路径a运动,曲率半径变小B.沿路径a运动,曲率半径变大C.-高二物理
如图所示,ABC为与匀强磁场垂直的边长为的等边三角形,比荷为的电子以速度0从A点沿AB边出射,欲使电子经过BC边,则磁感应强度B的取值为[]A.B.C.D.-高二物理
如8所示,两根非常靠近且相互垂直的长直导线,当通上如8所示方向上电流时,两电流各自产生的磁场在导线平面内的哪些区域内方向是一致的()A.区域IB.区域IIC.区域IIID.区域IV-高二物理
如图有一混合正离子束先后通过正交电场磁场区域I和匀强磁场区域Ⅱ,如果这束正离子束在区域I中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正子具有相同的()A.速度B.质量C-高二物理
(12分)如图所示,在竖直平面内有一边界半径为R的圆形匀强磁场区域,磁感应强度为B,方向垂直纸面向里.一质量为m、电量为q的负点电荷从圆边缘的P点沿直径方向进入匀强磁场中,-高二物理
如图所示,在边长为L的正方形区域内有垂直于纸面向里的匀强磁场,有一带正电的电荷,从D点以v0的速度沿DB方向射入磁场,恰好从A点射出,已知电荷的质量为m,带电量为q,不计-高三物理
如图所示,边长为的L的正方形区域abcd中存在匀强磁场,磁场方向垂直纸面向里。一带电粒子从ad边的中点M点以一定速度垂直于ad边射入磁场,仅在洛伦兹力的作用下,正好从ab边中-高三物理
关于安培力和洛仑兹力,下列说法正确的是()A.安培力是洛仑兹力的宏观表现B.安培力和洛仑兹力是性质不同的两种力C.洛仑兹力是安培力的宏观表现D.安培力和洛仑兹力,两者是同一-高二物理
如图所示,两个带电粒子M和N,以相同的速度经小孔S垂直进入同一匀强磁场,运行的半圆轨迹如图两种虚线所示,下列表述正确的是()A.M带负电,N带正电B.M的运行时间不可能等于N-高二物理
半径为R的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直于磁场方向射入磁场中,并从B点射出.∠AOB=120°,如图所示,则该带电粒子在-高二物理
关于带电粒子所受洛伦兹力f、磁感应强度B和粒子速度v三者方向之间的关系,下列说法正确的是[]A、f、B、v三者必定均保持垂直B、f必定垂直于B、v,但B不一定垂直于vC、B必定垂-高一物理
如图所示,在垂直纸面向里的匀强磁场的边界上,有两个电荷量绝对值相同、质量相同的正、负粒子(不计重力),从A点以相同的速度先后射入磁场中,入射方向与边界成θ角,则正、负-高二物理
关于回旋加速器的有关说法,正确的是A.回旋加速器是利用磁场对运动电荷的作用使带电粒子的速度增大的B.回旋加速器是用电场加速的C.回旋加速器是通过多次电场加速使带电粒子获-高二物理
(20分)如图所示,直线MN上方存在着垂直纸面向里、磁感应强度为B的匀强磁场,质量为m、电荷量为-q(q>0)的粒子1以速度v1=v0从O点垂直射入磁场,其方向与MN的夹角=30o;质量-高三物
如图所示,回旋加速器是用来加速带电粒子使它获得很大动能的装置,其核心部分是两个D型金属盒,置于匀强磁场中,两盒分别与高频电源相连。下列说法正确的有()A.粒子被加速后-高二物理
如图所示,回旋加速器是加速带电粒子的装置,设匀强磁场的磁感应强度为B,D形金属盒的半径为R,狭缝间的距离为d,匀强电场间的加速电压为U,要增大带电粒子(电荷量为q、质量-高二物理
质谱仪是一种测定带电粒子质量或分析同位素的重要设备,它的构造原理如图示.离子源S产生的各种不同正离子束(速度可视为零),经MN间的加速电压U加速后从小孔S1垂直于磁感线进-高二物理
如图所示,半径为R的绝缘圆筒中有沿轴线方向的匀强磁场,磁场方向垂直于纸面向里,匀强磁场的磁感应强度为B,圆筒形场区的边界由弹性材料构成。一个质量为m.电荷量为q的正离-高三物理
如图所示,相互平行的竖直分界面MN、PQ,相距L,将空间分为Ⅰ、Ⅱ、Ⅲ区.Ⅰ、Ⅲ区有水平方向的匀强磁场,Ⅰ区的磁感应强度未知,Ⅲ区的磁感应强度为B;Ⅱ区有竖直方向的匀强电场(图-高二物理
如图所示,有一垂直于纸面向外的磁感应强度为B的有界匀强磁场(边界上有磁场),其边界为一边长为L的三角形,A.B.C为三角形的顶点。今有一质量为m.电荷量为+q的粒子(不计重力)-高三物理
如图所示,长方形abcd长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T。一群不计重力、质-高三
(9分)如图所示,匀强磁场宽L=30cm,B=3.34×10-3T,方向垂直纸面向里,设一质子以v0=1.6×105m/s的速度垂直于磁场B的方向从小孔C射入磁场,然后打到照相底片上的A点,质子的-高
(19分)为了获得一束速度大小确定且方向平行的电子流,某人设计了一种实验装置,其截面图如题9图所示。其中EABCD为一接地的金属外壳。在A处有一粒子源,可以同时向平行于纸面-高三物理
(4分)如图所示,矩形区域宽度为l,其内有磁感应强度为B、垂直纸面向外的匀强磁场.一带电粒子以初速度v0垂直左边界射入,飞出磁场时偏离原方向300.若撤去原来的磁场,在此区域-高二物理
如图,OAC的三个顶点的坐标分别为O(0,0)、A(0,L)、C(,0),在OAC区域内有垂直于xOy平面向里的匀强磁场。在t=0时刻,同时从三角形的OA边各处以沿y轴正向的相同速度将质量均为-高三物
如图,用回旋加速器来加速带电粒子,以下说法正确的是A.图中加速器出口射出的是带正电粒子B.D形盒的狭缝间所加的电压必是交变电压C.强磁场对带电粒子做功,使其动能增大D.粒-高三物理
如图所示,装有导电液的玻璃器皿放在上端为S极的蹄形磁铁的磁场中,器皿中心的圆柱形电极与电源负极相连,内壁边缘的圆环形电极与电源正极相连.电流方向与液体旋转方向(从上-物理
如图所示,有A、B、C、D四个离子,它们带等量的同种电荷,质量关系mA=mB<mC=mD,以不等的速度vA<vB=vC<vD进入速度选择器后,只有两种离子从速度选择器中射出,进-高二
如图所示,q1、q2为两带电粒子,其中q1带正电,q2带负电.某时刻,它们以相同的速度垂直进入同一磁场,此时所受洛伦兹力分别为F1、F2.则()A.F1、F2的方向均向左B.F1、F2的方向-高二物理
如图,两水平放置的平行金属板M、N放在匀强磁场中,导线ab帖着M、N边缘以速度V向右匀速滑动,当一带电粒子以水平速度V0射入两板间后,能保持匀速直线运动,该带电粒子可能()-高二物理
1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()A.离子由加速器的中心附近进入加速器-高二物理
如图15-5-20所示,有a、b、c、d四个离子,它们带同种电荷且电荷量相等,它们的速率关系为va<vb=vc<vd,质量关系为ma=mb<mc=md.进入速度选择器后,有两种离子从速度选择器中-物理
带电量为+q的粒子,在匀强磁场中运动,下面说法正确的是()A.只要速度大小相同,所受的洛伦兹力就相同B.如果把+q改为-q,且速度反向大小不变,则所受的洛伦兹力大小、方向均不-高二物理
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°。一质量为m、带电量为+q的粒子以-高三物理
(18分)在平面直角坐标系的第一象限内存在一有界匀强磁场,该磁场的磁感应强度大小为B=0.1T,方向垂直于xOy平面向里,在坐标原点O处有一正离子放射源,放射出的正离子的比荷都-高三物理
返回顶部
题目简介
1932年,劳伦斯和利文斯顿设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应-高三物理
题目详情
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能Ekm。
答案
qU=
qv1B=m
解得r1=
同理,粒子第2次经过狭缝后的半径r2=
则r2:r1=
(2)设粒子到出口处被加速了n圈
2nqU=
qvB=m
T=
t=nT
解得
(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即f=
当磁感应强度为Bm时,加速电场的频率应为fBm=
粒子的动能Ek=
当fBm≤fm时,粒子的最大动能由Bm决定
qvmBm=
解得Ekm=
当fBm≥fm时,粒子的最大动能由fm决定
vm=2πfmR
解得Ekm=2π2m