如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB-九年级数学

题目简介

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB-九年级数学

题目详情

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF。
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F 为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由。
题型:解答题难度:偏难来源:浙江省中考真题

答案

解:(1)连结BC,
∵A(10,0),
∴OA=10 ,CA=5,
∵∠AOB=30°,
∴∠ACB=2∠AOB=60°,
∴弧AB的长=
(2)连结OD,
∵OA是⊙C直径,
∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分线,
∴OD=OA=10,
在Rt△ODE中,OE=
∴AE=AO-OE=10-6=4,
由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,


∴EF=3;
(3)设OE=x,
①当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,
有∠ECF=∠BOA或∠ECF=∠OAB,
当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC 中点,
即OE=
∴E1(,0);
当∠ECF=∠OAB时,有CE=5-x,AE=10-x,
∴CF∥AB,有CF=
∵△ECF∽△EAD,


解得:
∴E2(,0);
②当交点E在点C的右侧时,
∵∠ECF>∠BOA,
∴要使△ECF与△BAO相似,
只能使∠ECF=∠BAO,
连结BE,
∵BE为Rt△ADE斜边上的中线,
∴BE=AB=BD,
∴∠BEA=∠BAO,
∴∠BEA=∠ECF,
∴CF∥BE,

∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,
,而AD=2BE,

,解得<0(舍去),
∴E3(,0)。
③当交点E在点O的左侧时,
∵∠BOA=∠EOF>∠ECF
∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO
连结BE,得BE==AB,∠BEA=∠BAO
∴∠ECF=∠BEA,
∴CF∥BE,

又∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,
,而AD=2BE,


解得<0(舍去),
∵点E在x轴负半轴上,
∴E4(,0),
综上所述:存在以点E、C、F为顶点的三角形与△AOB相似,此时点E坐标为:
0)。

更多内容推荐