已知a=(53cosx,cosx),b=(sinx,2cosx),设函数f(x)=a•b+|b|2+32.(Ⅰ)当x∈[π6,π2],求函数f(x)的值域;(Ⅱ)当x∈[π6,π2]时,若f(x)=8

题目简介

已知a=(53cosx,cosx),b=(sinx,2cosx),设函数f(x)=a•b+|b|2+32.(Ⅰ)当x∈[π6,π2],求函数f(x)的值域;(Ⅱ)当x∈[π6,π2]时,若f(x)=8

题目详情

已知
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx)
,设函数f(x)=
a
b
+|
b
|2+
3
2

(Ⅰ)当x∈[
π
6
π
2
]
,求函数f(x)的值域;
(Ⅱ)当x∈[
π
6
π
2
]
时,若f(x)=8,求函数f(x-
π
12
)
的值.
题型:解答题难度:中档来源:不详

答案

(I)∵
a
b
=5
3
sinxcosx+2cos2x,
|b|
2
=sin2x+4cos2x
f(x)=
a
b
+|
b
|2+class="stub"3
2
=5
3
sinxcosx+2cos2x+sin2x+4cos2x+class="stub"3
2

=
5
3
2
sin2x+3(1+cos2x)+class="stub"1
2
(1-cos2x)+class="stub"3
2

=
5
3
2
sin2x+class="stub"5
2
cos2x+5=5sin(2x+class="stub"π
6
)+5
x∈[class="stub"π
6
,class="stub"π
2
]
,∴2x+class="stub"π
6
∈[class="stub"π
2
class="stub"7π
6
]
因此,-class="stub"1
2
≤sin(2x+class="stub"π
6
)≤1,可得函数f(x)的值域是[class="stub"5
2
,10].…(6分)
(Ⅱ)由(I)得5sin(2x+class="stub"π
6
)+5=8,得sin(2x+class="stub"π
6
)=class="stub"3
5

x∈[class="stub"π
6
,class="stub"π
2
]
,∴2x+class="stub"π
6
∈[class="stub"π
2
class="stub"7π
6
]
cos(2x+class="stub"π
6
)=-
1-(class="stub"3
5
)2
=-class="stub"4
5
,…(10分)
∴sin2x=sin[(2x+class="stub"π
6
)-class="stub"π
6
]=class="stub"3
5
3
2
-(-class="stub"4
5
)•class="stub"1
2
=
3
3
+4
10

因此,f(x-class="stub"π
12
)
=5sin2x+5=
3
3
2
+7
.…(12分)

更多内容推荐