设x1,x2,x3,x4,x5,x6,x7为自然数,且x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,则x1+x2+x3的最大值是______.-数学

题目简介

设x1,x2,x3,x4,x5,x6,x7为自然数,且x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,则x1+x2+x3的最大值是______.-数学

题目详情

设x1,x2,x3,x4,x5,x6,x7为自然数,且x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,则x1+x2+x3的最大值是______.
题型:填空题难度:中档来源:不详

答案

∵x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,
∴x1+(x1+1)+(x1+2)…+(x1+6)≤159,
解得x1≤19class="stub"5
7

∴x1的最大值为19,
同理可得x2的最大值为20,x3的最大值为21,
∴x1+x2+x3的最大值是60.
故答案为60.

更多内容推荐