优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在绝缘水平面上放置一质量为m=2.0×10-3kg的带电滑块A,电量为q=1.0×10-7C。在A的左边L=1.2m处放置一个不带电的滑块B,质量为M=6.0×10-3kg,滑块B距左边竖直绝缘墙壁s
在绝缘水平面上放置一质量为m=2.0×10-3kg的带电滑块A,电量为q=1.0×10-7C。在A的左边L=1.2m处放置一个不带电的滑块B,质量为M=6.0×10-3kg,滑块B距左边竖直绝缘墙壁s
题目简介
在绝缘水平面上放置一质量为m=2.0×10-3kg的带电滑块A,电量为q=1.0×10-7C。在A的左边L=1.2m处放置一个不带电的滑块B,质量为M=6.0×10-3kg,滑块B距左边竖直绝缘墙壁s
题目详情
在绝缘水平面上放置一质量为m=2.0×10
-3
kg的带电滑块A,电量为q=1.0×10
-7
C。在A的左边L=1.2 m处放置一个不带电的滑块B,质量为M=6.0×10
-3
kg,滑块B距左边竖直绝缘墙壁s=0.6 m,如图所示,在水平面上方空间加一方向水平向左的匀强电场,电场强度为E=4.0×10
5
N/C,A由静止开始向左滑动并与B发生碰撞,设碰撞的过程极短,碰撞后两滑块结合在一起共同运动并与墙壁相碰撞,在与墙壁发生碰撞时没有机械能损失,两滑块始终没有分开,两滑块的体积大小可以忽略不计。已知A、B与地面的动摩擦因数均为μ=0.5。(取g=10 m/s
2
)
(1)求A与B碰撞前的速度;
(2)计算滑块A从开始运动到最后静止所用的时间;
(3)试通过计算,在坐标图中作出滑块A从开始运动到最后静止的速度时间图象。
题型:计算题
难度:偏难
来源:天津模拟题
答案
解:(1)A从静止到与B碰撞前,由动能定理有:
解得:VA=6 m/s
(2)A从加速到碰撞前,由牛顿第二定律得:qEL-μmAg=mAaA
解得:aA=1.5 m/s2
即得:
A、B碰撞过程极短,由动量守恒定律得:mAVA=(mA+mB)v1
解得v1=1.5 m/s
碰后,由于qE=μ(mA+mB)g
故A、B一起向左做匀速直线运动,运动时间为:
然后A、B一起与墙碰撞,由于碰撞无机械能损失,故获得等大反向速度,反向运动过程中做匀减速运动,由牛顿第二定律可得:qE+μ(mA+mB)g=(mA+mB)a共
解得:a共=10 m/s2
所以减速到0的时间:
之后由qE=μ(mA+mB)g受力平衡,保持静止,故从A由静止开始运动到最后静止经历的时间为:
t=t1+t2+t3=0.95 s
(3)A运动的速度一时间图象如图所示
上一篇 :
如图所示,足够长的绝缘光滑水平
下一篇 :
质量为m的小球A在光滑的水平面
搜索答案
更多内容推荐
质量为1kg的物体m1,以某一初速度在水平面上滑行,过一段时间后与m2发生碰撞,其位移随时间变化的情况如图所示,若g取10m/s2,则m2=____kg。-高二物理
如图,倾角为θ的斜面固定。有n个质量都为m的相同的小木块(可视为质点)放置在斜面上。相邻两小木块间距离都为l,最下端的木块距底端也是l,小木块与斜面间的动摩擦因数都为μ。-高二物理
质量为m1=2kg的物体与质量为m2(具体数值未知)的物体在光滑水平面上正碰,碰撞时间忽略不计,其位移-时间图像如图所示问:(1)m2为多少千克?(2)m1物体碰撞后动量增量的大小是多-高二物理
水平面上质量为m的滑块A以速度v碰撞质量为2m/3的静止滑块B,碰撞后AB的速度方向相同,它们的总动量为___________;如果滑块B获得的初速为v0,碰撞后滑块A的速度为__________-高
如图表示有n个相同的质点静止在光滑平面上的同一直线上,相邻的两个质点间的距离都是1m,在某时刻给第一个质点一个初速度v,依次与第二个、第三个……质点相碰,且每次碰后相碰-高三物理
有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失。碰后B运动的轨迹为OD曲线,如图所示。(1)已知滑块质量为m,碰撞时-高三物理
质量均为m的两个小物体A和B,静止放在足够长的水平面上,相距L=12.5m。它们跟水平面间的动摩擦因数均为μ=0.2,其中A带电荷量为q的正电荷,与水平面的接触是绝缘的,B不带电-高三物理
如图有一个竖直固定在地面的透气圆筒,筒中有一劲度系数为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调。-高三物理
如图所示,质量为m3=3kg的滑道静止在光滑的水平面上,滑道的AB部分是半径为R=0.15m的四分之一的圆弧,圆弧底部与滑道水平部分相切,滑到水平部分右端固定一个轻弹簧。滑道除-高三物理
在研究碰撞中的动量守恒实验中,让质量为m1的小球从圆弧轨道上沿轨道向下运动,去碰原来静止在小支柱上的质量为m2的小球。(1)选用小球时,应满足[]A.m1=m2B.m1>m2C.m1<m-高二物
如图所示,长为0.60m的木板A,质量为1kg,板的右端放有物块B,质量为3kg,它们一起在光滑水平面上向左匀速运动,速度,以后木板A与等高的竖直固定档板C发生碰撞,碰撞时间极-高三物理
物体A和B在光滑的水平面上相向运动,它们的初动能之比EkA:EkB=4:1,两者相遇后发生正碰。它们在碰撞的过程中,动能同时减小到零,又同时增大,最后两者反向运动,则两物体的-高三物理
如图所示,一个物块A(可看成质点)放在足够长的平板小车B的右端,A、B一起以v0的水平初速度沿光滑水平面向左滑行。左边有一固定的竖直墙壁,小车B与墙壁相碰,碰撞时间极短,-高三物理
左端固定在墙壁上的轻弹簧将一质量为M的小物块A弹出,物块A离开弹簧后与一质量为m的静止在水平地面上的小物块B发生弹性正碰,如图所示,一切摩擦均不计,为使二者至少能发生-高三物理
质量为m、速度为v的A球与质量为3m的静止B球发生正碰。碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值。碰撞后B球的速度大小可能是[]A.0.6vB.-高三物理
用轻弹簧相连的质量均为2kg的A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量4kg的物块C静止在前方,如图所示,B与C碰撞后二者两者立即粘在一起运动-高三物理
如图所示,两个半径相同的小球A、B分别被不可伸长的细线悬吊着,两个小球静止时,它们刚好接触,且球心在同一条水平线上,两根细线竖直。小球A的质量小于B的质量。现向左移动-高三物理
光滑水平面上,用弹簧相连接的质量均为2kg的A、B两物体都以v0=6m/s速度向右运动,弹簧处于原长。质量为4kg的物体C静止在前方,如图所示,B与C发生碰撞后粘合在一起运动,在以-高三物理
如图示,质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直固定挡板,B的右端距离挡板S。现有一小物体A(可视为质点)质量为m=1kg,以初速度从B的左端水平滑上B。已知A与-高三物理
如图所示,在光滑水平地面上有两个完全相同的小球A和B,它们的质量都为m,现B球静止,A球以速度v0与B球发生正碰,针对碰撞后的动能下列说法中正确的是[]A.B球动能的最大值是-高三物理
在水平放置的气垫导轨上,一个质量为0.4kg的滑块甲以0.5m/s的速度与另一个质量为0.6kg、速度为0.1m/s的滑块乙迎面相撞,碰撞后滑块乙的速度大小变为02m/s,此时滑块甲的-高三物理
在光滑水平地面上放有一质量为M带光滑弧形槽的小车,一个质量为m的小铁块以速度v沿水平槽口滑去,如图所示,求:(1)铁块能滑至弧形槽内的最大高度H;(设m不会从左端滑离M)(2)-高三物理
如图所示,有一光滑轨道ABC,AB为竖直平面内半径为R的四分之一圆弧轨道,BC部分为足够长的水平轨道。一个质量为m1的小物体自A处由静止释放,m1沿圆弧轨道AB滑下,与在水平轨-高三物理
一炮艇在湖面上匀速行驶,突然从船头和船尾同时水平向前和向后各发射一发炮弹,设两炮弹质量相同,相对于地的速率相同,船的牵引力和阻力均不变,则船的速度的变化情况是:()-高二物理
如图甲所示,光滑水平面上有A、B两物块,已知A物块的质量mA=1kg。初始时刻B静止,A以一定的初速度向右运动,之后与B发生碰撞并一起运动,它们的位移-时间图象如图乙所示(规定-高三物理
如图所示,质量均为m的两物体b、c分别与轻质弹簧两端相连接,将它们静止放在地面上。弹簧劲度系数为k。一质量也为m小物体a从距b物体h高处由静止开始下落。a与b相碰后立即粘在-高三物理
动能相同的A、B两球,它们的质量分别为mA、mB,且mA>mB,在光滑的水平面上相向运动,当两球相碰后,其中一球停止运动,则可判定:()A.碰撞前A球的速度大于B球的速度B.碰撞前A-高二物理
科学家们使两个带正电的重离子被加速后沿同一条直线相向运动而发生猛烈碰撞,试图用此模拟宇宙大爆炸的情境.为了使碰撞前的动能尽可能多地转化为内能,关键是设法使这两个重-高二物理
如图所示,一个物块A(可看成质点)放在足够长的平板小车B的右端,A、B一起以v0的水平初速度沿光滑水平面向左滑行。左边有一固定的竖直墙壁,小车B与墙壁相碰,碰撞时间极短,-高三物理
如图所示,一质量为m的小物块B,放在质量为M的长木板A的左端,m=3M。长木板A静止在光滑水平面上,A、B之间的动摩擦因数为μ。现使二者一起以初速度开始向右运动,运动一段距离-高三物理
如图所示,在倾角θ=30°、足够长的斜面上分别固定着两个相距L=0.2m的物体A、B,它们的质量mA=mB=1kg,与斜面间的动摩擦因数分别为和。在t=0时刻同时撤去固定两物体的外力后,-高三物理
如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。两球质量关系为mB=2mA,规定向右为正方向,A球的动量为6kg·m/s,B两球的动量为4kg·m/s,运动中两球发生碰撞,-高三物理
下列运动属于反冲运动的是()A.喷气式飞机的运动B.直升机的运动C.火箭的运动D.汽车的运动-高一物理
在光滑水平面上有两辆车,上面分别站着A、B两个人,人与车的质量总和相等,在A的手中拿有一个球,两车均保持静止状态.当A将手中球抛给B,B接到后,又抛给A,如此反复多次,-物理
如图所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接。质量为m的小球从高为h处由静止开始沿轨道下滑,与静止在轨道BC段上质量为km的小球发生碰撞,-高三物理
一个在空中飞行的手雷,以水平速度v飞经离地面高为h的轨道最高点时,炸裂成A、B两块,A、B质量之比为n(少量炸药质量不计).之后,B正好自由下落,求A的落地点比不发生爆炸时-物理
一个连同装备共有kg的宇宙行员,脱离宇宙飞船后,在离飞船L=45m处与飞船处于相对静止状态,他带着一个装有0.5kg氧气的贮氧筒,贮氧筒有个可以使氧气以v=50m/s的速度喷出的喷-物理
如图所示,小球B用轻绳悬挂于O点,球B恰好与水平地面D点接触,水平地面与斜面连接处E可视为一小段圆弧,水平地面DE部分长度L=3.5m。一质量为m的滑块A(可视为质点)从倾角370-物理
如图所示,长为L的不可伸长的绳子一端固定在O点,另一端系质量为m的小球,小球静止在光滑水平面上。现用大小为F水平恒力作用在另一质量为2m的物块上,使其从静止开始向右运动-高二物理
甲、乙两辆完全一样的小车处于光滑水平面上,质量都是M,乙车内用绳吊一质量为0.5M的小球。当乙车静止时,甲车以速度v与乙车相碰,碰后连为一体,则刚碰后瞬间两车的共同速-高二物理
如图所示,小球A以速率向右运动时跟静止的小球B发生碰撞,碰后A球以的速率弹回,而B球以的速率向右运动,求A、B两球的质量之比。-高二物理
质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ。初始时小物块停在箱子正中间,如图所示。现给小物块一-高三物理
如图16-5-3所示,带有光滑1/4圆弧轨道的滑块静止在一个光滑水平面上,质量为M.一个质量为m的小球静止在A处,当小球从滑块B处飞出时,滑块M的反冲速度为多大?(圆弧半径R已知-物理
在光滑水平面上沿x轴正方向作直线运动的物体A质量为m1,速度为v1=2m/s;另一个物体B质量为m2,以v2=4m/s的速率沿x轴负方向迎面向A运动,若两物体相碰后粘在一起并且恰好停止-高三物理
如图所示,足够长的水平粗糙轨道与固定在水平面上的光滑弧形轨道在P点相切,质量为m的滑块B静止于P点;质量为2m的滑块A由静止开始沿着光滑弧形轨道下滑,下滑的起始位置距水-高二物理
如图所示,足够长的光滑水平面右端与平板车D的上表面平齐,D的质量为M=3.0kg,车长L=1.08m,滑块A、B、C置于光滑水平面上,它们的质量。开始时滑块B、C之间用细绳相连,其间-物理
在光滑的水平面上,质量为m1的小球A以速率v0向右运动,在小球A的前方O点处有一质量为m2的小球B处于静止状态,如图所示。小球A与小球B发生正碰后小球A、B均向右运动,小球B被-高三物理
在可控核反应堆中需要给快中子减速,轻水、重水和石墨等常用作减速剂中子在重水中可与21H核碰撞减速,在石墨中与126C核碰撞减速。上述碰撞可简化为弹性碰撞模型。某反应堆中-高三物理
如右图所示,一轻质弹簧上端悬挂于天花板,下端系一质量为M的平板,处于平衡状态,一质量为m的均匀环套在弹簧外,与平板的距离为h.让环自由下落,撞击平板.已知碰后环与板-物理
一质量为6×103kg的火箭从地面竖直向上发射,若火箭喷射燃料气体的速率(相对于火箭)为103m/s,求:(1)每秒钟喷出多少气体才能有克服火箭重力所需的推力?(2)每秒钟喷出多少气体才-高三物理
返回顶部
题目简介
在绝缘水平面上放置一质量为m=2.0×10-3kg的带电滑块A,电量为q=1.0×10-7C。在A的左边L=1.2m处放置一个不带电的滑块B,质量为M=6.0×10-3kg,滑块B距左边竖直绝缘墙壁s
题目详情
(1)求A与B碰撞前的速度;
(2)计算滑块A从开始运动到最后静止所用的时间;
(3)试通过计算,在坐标图中作出滑块A从开始运动到最后静止的速度时间图象。
答案
解得:VA=6 m/s
(2)A从加速到碰撞前,由牛顿第二定律得:qEL-μmAg=mAaA
解得:aA=1.5 m/s2
即得:
A、B碰撞过程极短,由动量守恒定律得:mAVA=(mA+mB)v1
解得v1=1.5 m/s
碰后,由于qE=μ(mA+mB)g
故A、B一起向左做匀速直线运动,运动时间为:
然后A、B一起与墙碰撞,由于碰撞无机械能损失,故获得等大反向速度,反向运动过程中做匀减速运动,由牛顿第二定律可得:qE+μ(mA+mB)g=(mA+mB)a共
解得:a共=10 m/s2
所以减速到0的时间:
之后由qE=μ(mA+mB)g受力平衡,保持静止,故从A由静止开始运动到最后静止经历的时间为:
t=t1+t2+t3=0.95 s
(3)A运动的速度一时间图象如图所示