已知数列{an}(n∈N*)满足a1=1且an=an-1cos2nπ3,则其前2013项的和为______.-数学

题目简介

已知数列{an}(n∈N*)满足a1=1且an=an-1cos2nπ3,则其前2013项的和为______.-数学

题目详情

已知数列{an}(n∈N*)满足a1=1且an=an-1cos
2nπ
3
,则其前2013项的和为______.
题型:填空题难度:中档来源:不详

答案

当n=3k(k∈N)时,cosclass="stub"2×3kπ
3
=cos2kπ=1

当n=3k+1(k∈N)时,cos
2×(3k+1)π
3
=cos(2kπ+class="stub"2π
3
)
=cosclass="stub"2π
3
=-class="stub"1
2

当n=3k+2(k∈N)时,cos
2×(3k+2)π
3
=cos(2kπ+class="stub"4
3
π)=-cosclass="stub"π
3
=-class="stub"1
2

由a1=1且an=an-1cosclass="stub"2nπ
3

得:a2=a1cosclass="stub"2π
3
=-class="stub"1
2
a3=a2cos2π=-class="stub"1
2

a4=a3cosclass="stub"8π
3
=(-class="stub"1
2
)×(-class="stub"1
2
)=class="stub"1
4
a5=a4cosclass="stub"10π
3
=class="stub"1
4
×(-class="stub"1
2
)=-class="stub"1
8

a6=a5cosclass="stub"12π
3
=(-class="stub"1
8
)×cos4π=(-class="stub"1
8
)×1=-class="stub"1
8


由此可得从第一项起,数列{an}的每三项和为0,
而2013=671×3,所以,S2013=(a1+a2+a3)+(a4+a5+a6)+…+(a2011+a2012+a2013)=0.
故答案为0.

更多内容推荐