观察算式:11×2=1-12=12,11×2+12×3=1-12+12-13=2311×2+12×3+13×4=1-12+12-13+13-14=34按规律填空11×2+12×3+13×4+14×5=

题目简介

观察算式:11×2=1-12=12,11×2+12×3=1-12+12-13=2311×2+12×3+13×4=1-12+12-13+13-14=34按规律填空11×2+12×3+13×4+14×5=

题目详情

观察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按规律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=______
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=______;
如果n为正整数,那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=______.
由此拓展写出具体过程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=______.
题型:解答题难度:中档来源:不详

答案

class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+class="stub"1
4×5

=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+class="stub"1
4
-class="stub"1
5

=1-class="stub"1
5

=class="stub"4
5


class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+class="stub"1
4×5
+…+class="stub"1
99×100

=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+class="stub"1
4
-class="stub"1
5
+…+class="stub"1
99
-class="stub"1
100

=1-class="stub"1
100

=class="stub"99
100


class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+class="stub"1
4×5
+…+class="stub"1
n×(n+1)

=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+class="stub"1
4
-class="stub"1
5
+…+class="stub"1
n
-class="stub"1
n+1

=1-class="stub"1
n+1

=class="stub"n
n+1


class="stub"1
1×3
+class="stub"1
3×5
+class="stub"1
5×7
+…+class="stub"1
99×101

=class="stub"1
2
×(1-class="stub"1
3
+class="stub"1
3
-class="stub"1
5
+…+class="stub"1
99
-class="stub"1
101

=class="stub"1
2
×(1-class="stub"1
101

=class="stub"1
2
×class="stub"100
101

=class="stub"50
101

故答案为:class="stub"4
5
class="stub"99
100
class="stub"n
n+1

更多内容推荐