如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC∶CF=3∶2,则sinB=___

题目简介

如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC∶CF=3∶2,则sinB=___

题目详情

如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC∶CF=3∶2,则 sinB=______
题型:填空题难度:中档来源:不详

答案


分析:由NC:CF=3:2,设NC=3x,则CF=2x,根据AB为直径可证BC⊥AE,因为CF为⊙O的切线,故OC⊥CF,利用互余关系可证∠OCB=∠ECF,∠B=∠E,而OB=OC,则∠OCB=∠B,故∠ECF=∠E,EF=CF=2x,同理可证∠FCN=∠FNC,FN=CF=2x,利用∠B=∠E,在Rt△CEN中,求sinE即可.
解:依题意,NC:CF=3:2,设NC=3x,则CF=2x,
∵AB为直径,∴BC⊥AE,
∵CF为⊙O的切线,∴OC⊥CF,
∵∠OCB+∠BCF=∠BCF+∠ECF=90°,
∴∠OCB=∠ECF,同理可证∠B=∠E,
∵OB=OC,∴∠OCB=∠B,
∴∠ECF=∠E,则EF=CF=2x,
同理可证∠FCN=∠FNC,则FN=CF=2x,
∴在Rt△CEN中,sinE===
∴sinB=sinE=
故答案为

更多内容推荐