在二项式(3x-123x)n的展开式中,前三项系数的绝对值成等差数列(1)求n的值;(2)求展开式中二项式系数最大的项;(3)求展开式中项的系数最大的项.-数学

题目简介

在二项式(3x-123x)n的展开式中,前三项系数的绝对值成等差数列(1)求n的值;(2)求展开式中二项式系数最大的项;(3)求展开式中项的系数最大的项.-数学

题目详情

在二项式(
3x
-
1
2
3x
)n
的展开式中,前三项系数的绝对值成等差数列
(1)求n的值;
(2)求展开式中二项式系数最大的项;
(3)求展开式中项的系数最大的项.
题型:解答题难度:中档来源:不详

答案

(1)二项式(
3x
-class="stub"1
2
3x
)n
的展开式中,前三项系数的绝对值成等差数列,
C0n
+class="stub"1
4
C2n
=2•class="stub"1
2
C1n
,即 n2-9n+8=0,解得 n=8;
(2)由于第r+1项的二项式系数为
Cr8
,故当r=4时,二项式系数最大,故二项式系数最大的项为
T5=
 C48
(-class="stub"1
2
)
4
=class="stub"35
8

(3)先研究系数绝对值即可,
Cr8
(class="stub"1
2
)
r
Cr+18
(class="stub"1
2
)
r+1
Cr8
(class="stub"1
2
)
r
Cr-18
(class="stub"1
2
)
r-1
 
,解得2≤r≤3,
故系数最大的项为第三项,即T3=7xclass="stub"4
3

更多内容推荐