优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 你能构造一个实际背景,对等式Cn+1m=Cnm+Cnm-1的意义作出解释吗?-数学
你能构造一个实际背景,对等式Cn+1m=Cnm+Cnm-1的意义作出解释吗?-数学
题目简介
你能构造一个实际背景,对等式Cn+1m=Cnm+Cnm-1的意义作出解释吗?-数学
题目详情
你能构造一个实际背景,对等式C
n+1
m
=C
n
m
+C
n
m-1
的意义作出解释吗?
题型:解答题
难度:中档
来源:不详
答案
从装有n个白球,1个黑球,共n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),
若直接取,由组合数公式可得,其有Cn+1m种取法;
同时,也可以分成两类:一类是取出的m个球全部为白球,有Cnm种取法,另一类是,取出1个黑球,m-1个白球,Cn+1m种取法;即有Cnm+Cnm-1种取法;
则Cnm+Cnm-1=Cn+1m成立.
上一篇 :
“错误”的英文拼写为error,某
下一篇 :
5位同学报名参加篮球、象棋、
搜索答案
更多内容推荐
若C3n=C4n,则n!3!(n-3)!的值为()A.1B.20C.35D.7-数学
(1)6本不同的书全部送给5人,有多少种不同的送书方法?(2)5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法?(3)5本相同的书全部送给6人,每人至多1本,有多少种-数学
用0,1,2,3,4五个数字,可组成无重复数字的三位偶数的个数是()A.48B.30C.18D.12-数学
如对自然数n作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象,而23不是可连数,因23+24+25产生进位现象,那么小
由1、2、3、4、5组成的无重复数字的五位数中奇数有______个.-数学
规定Cmx=x(x-1)…(x-m+1)m!,其中x∈R,m是正整数,且CX0=1.这是组合数Cnm(n,m是正整数,且m≤n)的一种推广.(1)求C-153的值;(2)组合数的两个性质:①Cnm=C
3个女生和6个男生排成一排,要求男生站在两端且女生都不相邻的排法有______种.-数学
某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有()种.(用数字作答)-高三数学
将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他3个盒子中球的颜色齐全的不同放法共有______种.(用数字作答)-数学
高三(1)班准备在本班7名演讲选手中抽取5人参加班会课的演讲比赛(每人演讲一场),若甲、乙两人一定被选中,且甲的出场顺序排在乙的前面(不一定相邻),则高三(1)班5名参加演讲-数学
从5名男生和2名女生中选3人参加英语演讲比赛,则必有女生参加的选法共有______.(用数字作答)-数学
C02013+C22013+C42013+C62013+…+C20122013=______.-数学
从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字组成没有重复数字的四位数,这样的四位数共有______个.(用数字作答).-数学
一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有______种不同的选答方法.-数学
有4名男生,3名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法?(3)要求女生必须站在一起,则有多少种不-数学
七张卡片上分别写有0、0、1、2、3、4、5,现从中取出三张后排成一排,组成一个三位数,则共能组成()个不同的三位数.A.100B.105C.145D.150-数学
用0、1、2、3、4、5这六个数字,组成没有重复数字的六位数.(1)这样的六位奇数有多少个?(2)数字5不在个位的六位数共有多少个?(3)数字1和2不相邻,这样的六位数共有多少个?-数学
将12名同学分配到三个不同的路口进行车流量的检查,若每个路口4人,则不同的分配方案共有______种.-数学
由数字1,2,3,4组成没有重复数字的四位数中,偶数共有______个.-数学
甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有[]A.6种B.12种C.24种D.30种-高三数学
用0,1,2,3,4,5这六个数字可以组成______个无重复数字且小于1000的正整数.-数学
从6名团员中选出4人分别担任书记、副书记、宣传委员、组织委员四项职务,若其中甲、乙不能担任书记,则不同的任职方案种数是()A.280B.240C.180D.96-数学
某校6名艺术生报考3所院校,每所院校至少报一人,每人只能报一所院校,其中甲、乙2人填报同一院校,则不同的填报结果共有()A.78种B.150种C.168种D.390种-数学
用0,1,2,3,4,5这六个数字组成无重复数字的正整数.(1)共有多少个四位数?其中偶数有多少个?(2)比4301大的四位数有多少个?(3)能被3整除的四位数有多少个?注:以上结果均用数-数学
在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②-数学
从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有______种.(用数字作答)-数学
求C3n38-n+C21+n3n的值.-数学
在1到100这100个自然数中,选取20个,要求这20个数两两不相邻,则共有______种选法.-数学
某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,3件展品所选用的展台既不在两端又不相邻,且3件展品所选用的展台之间间隔不超过2个展台,则不同的展出-数学
从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有()A.24种B.36种C.48种D.60种-数学
有甲、乙、丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A.1260B.2025C.2520D.5040-数学
某高三学生希望报名参加某6所高校中的3所学校的自主招生考试,由于其中两所学校的考试时间相同,因此该学生不能同时报考这两所学校.该学生不同的报考方法种数是______.(用数-数学
某校有6间不同的电脑室,每天晚上至少开放2间,则不同安排方案的种数是______.-数学
5名学生与两名教师站成一排照相,两名教师之间恰好有两名学生的不同站法有()种.A.120B.240C.480D.960-数学
从4名同学中选出3人,参加一项活动,则不同的方法有()种.A.3B.4C.6D.24-数学
从6个高度不同的同学中选取5个同学排成一排照相,要求偶数位置的同学高于相邻两个奇数位置的同学,则可产生的照片数是()A.60B.72C.84D.96-数学
试用两种方法证明:(1)C0n+C1n+…+Cnn=2n(n∈N*);(2)C1n+2C2n+…+nCnn=n2n-1(n∈N*且n≥2).-数学
有三本不同的书,一个人去借,至少借一本的方法有()A.3种B.6种C.7种D.9种-数学
0,1,3,4四个数可组成______不同的无重复数字的四位数.-数学
从红桃2、3、4、5和梅花2、3、4、5这8张扑克牌中取出4张排成一排,如果取出的4张扑克牌所标的数字之和等于14,则不同的排法共有______种(用数字作答).-数学
从1,2,3,4中选择数字,组成首位数字为1,有且只有两个数位上的数字相同的四位数,这样的四位数有______个.-数学
2013年中俄联合军演在中国青岛海域举行,在某一项演练中,中方参加演习的有5艘军舰,4架飞机;俄方有3艘军舰,6架飞机.若从中、俄两方中各选出2个单位(1架飞机或一艘军舰都作-数学
从5双不同号码的鞋子中任取4只,则这4只鞋子至少有2只可配成一双的可能有()A.120种B.130种C.240种D.250种-数学
从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有()A.C102A84种B.C91A95种C.C81A95种D.C81A85种-数学
5位同学参加比赛,决出了第一到第五的名次,评委告诉甲、乙两位同学,你们俩位都没有拿到冠军,但也不是最差的.则5位同学排名顺序有______种不同情况.-数学
现从8名学生中选2人参加数学比赛,共有()种不同的选派方法.A.56B.14C.28D.72-数学
若Cx18=C3x-618,则x=______.-数学
C57-C56=()A.C68B.C67C.C47D.C46-数学
用排列数表示18×17×16×…×9×8=______.-数学
从0、1、3、5、7中取出不同的三个数作系数,可组成______个不同的一元二次方程ax2+bx+c=0.-数学
返回顶部
题目简介
你能构造一个实际背景,对等式Cn+1m=Cnm+Cnm-1的意义作出解释吗?-数学
题目详情
答案
若直接取,由组合数公式可得,其有Cn+1m种取法;
同时,也可以分成两类:一类是取出的m个球全部为白球,有Cnm种取法,另一类是,取出1个黑球,m-1个白球,Cn+1m种取法;即有Cnm+Cnm-1种取法;
则Cnm+Cnm-1=Cn+1m成立.