如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.-

题目简介

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.-

题目详情

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB上,点G在边BC上.
(1)求证:△ADE≌△BGF;
(2)若正方形DEFG的面积为16cm2,求AC的长.360优课网
题型:解答题难度:中档来源:怀化

答案


360优课网
(1)证明:∵△ABC是等腰直角三角形,∠C=90°,
∴∠B=∠A=45°,
∵四边形DEFG是正方形,
∴∠BFG=∠AED=90°,
故可得出∠BGF=∠ADE=45°,GF=ED,
∵在△ADE与△BGF中,
∠BFG=∠AED
GF=DE
∠BGF=∠ADE

∴△ADE≌△BGF(ASA);


(2)过点C作CG⊥AB于点G,
∵正方形DEFG的面积为16cm2,
∴DE=AE=4cm,
∴AB=3DE=12cm,
∵△ABC是等腰直角三角形,CG⊥AB,
∴AG=class="stub"1
2
AB=class="stub"1
2
×12=6cm,
在Rt△ADE中,
∵DE=AE=4cm,
∴AD=
AE2+DE2
=
42+42
=4
2
cm,
∵CG⊥AB,DE⊥AB,
∴CGDE,
∴△ADE△ACG,
class="stub"AE
AG
=class="stub"AD
AC
class="stub"4
6
=
4
2
AC

解得AC=6
2
cm.

更多内容推荐