矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为A.8B.C.4D.-七年级数学

题目简介

矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为A.8B.C.4D.-七年级数学

题目详情

矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为
A.8B.C.4 D.
题型:单选题难度:偏易来源:不详

答案

B
着色部分的面积等于原来矩形的面积减去△ECF的面积,应先利用勾股定理求得FC的长,进而求得相关线段,代入求值即可.
解:在Rt△GFC中,有FC2-CG2=FG2,
∴FC2-22=(4-FC)2,
解得,FC=2.5,
∴阴影部分面积为:AB?AD-FC?AD=
故选B.

更多内容推荐