如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另-高二物理

题目简介

如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另-高二物理

题目详情

如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:
(1)小物块Q离开平板车时速度为多大?
(2)平板车P的长度为多少?
(3)小物块Q落地时距小球的水平距离为多少?
题型:问答题难度:中档来源:不详

答案

(1)小球由静止摆到最低点的过程中,有
mgR(1-cos60°)=class="stub"1
2
m
v20

解得,小物块到达最低点与Q碰撞之前瞬间的速度是:v0=
gR

小球与物块Q相撞时,没有能量损失,动量守恒,机械能守恒,则有
mv0=mv1+mvQ
class="stub"1
2
m
v20
=class="stub"1
2
m
v21
+class="stub"1
2
m
v2Q

解得,v1=0,vQ=v0=
gR

二者交换速度,即小球静止下来,Q在平板车上滑行的过程中,系统的动量守恒,则有
mvQ=Mv+m•2v
解得,v=class="stub"1
6
vQ
=
gR
6

小物块Q离开平板车时,速度为2v=
gR
3

(2)由能的转化和守恒定律,知
fL=class="stub"1
2
m
v2Q
-class="stub"1
2
Mv2
-class="stub"1
2
m(2v)2

又f=μmg
解得,平板车P的长度为L=class="stub"7R
18μ

(3)小物块Q在平板车上滑行过程中,对地位移为s,则
-μmgs=class="stub"1
2
m(2v)2
-class="stub"1
2
m
v2Q

解得,s=class="stub"4R

小物块Q离开平板车做平抛运动,平抛时间为 t=
class="stub"2h
g

水平距离x=2vt=
2gR
3

故Q落地点距小球的水平距离为s+x=class="stub"4R
+
2gR
3

答:
(1)小物块Q离开平板车时速度为
gR
3

(2)平板车P的长度为为class="stub"7R
18μ

(3)小物块Q落地时距小球的水平距离为class="stub"4R
+
2gR
3

更多内容推荐