设a=1+112+122+1+122+132+1+132+142+…+1+120002+120012,问与a最接近的整数是多少?-数学

题目简介

设a=1+112+122+1+122+132+1+132+142+…+1+120002+120012,问与a最接近的整数是多少?-数学

题目详情

设a=
1+
1
12
+
1
22
+
1+
1
22
+
1
32
+
1+
1
32
+
1
42
+…+
1+
1
20002
+
1
20012
,问与a最接近的整数是多少?
题型:解答题难度:中档来源:不详

答案

∵n为任意的正整数,
1+class="stub"1
n2
+class="stub"1
(n+1)2
=
n2(n+1)2+n2+(n+1)2
[n(n+1)]2

=
[n(n+1)]2+2n(n+1)+1
[n(n+1)]2
=
(n2+n+1)2
[n(n+1)]2
=
n2+n+1
n(n+1)
=1+class="stub"1
n(n+1)

∴a=(1+class="stub"1
1×2
)+(1+class="stub"1
2×3
)+(1+class="stub"1
3×4
)
+…+(1+class="stub"1
2000×2001

=2000+class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+…+class="stub"1
2000×2001

=2000+(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
)+…+(class="stub"1
2000
-class="stub"1
2001
)=2001-class="stub"1
2001

因此,与a最接近的整数是2001.

更多内容推荐