阅读下面材料:解答问题已知;a、b、c是△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状。解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2+b2)(a2-b

题目简介

阅读下面材料:解答问题已知;a、b、c是△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状。解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2+b2)(a2-b

题目详情

阅读下面材料:解答问题
已知;a、b、c是△ABC的三边,且满足a2c2 -b2c2 =a4 - b4 ,试判断△ABC的形状。
解:∵ a2c2 -b2c2 =a4 - b4                                                                    
      ∴ c2(a2 -b2 )=(a2 +b2)(a2 -b2)                          ②
      ∴ c2 = a2 +b2                                                                                   
      ∴ △ABC是直角三角形问题:
(1)上述解题过程,从哪一步开始出现错误:_________ (写出序号),
  错误的原因是;________________________ 。
(2)请你正确解答:
题型:解答题难度:中档来源:期末题

答案

(1) ③ ;(a2 -b2 )可以为0 ;
(2) 解:∵ a2c2 -b2c2 =a4 -b4
     ∴ c2(a2 -b2 )=(a2 +b2)(a2 -b2)
    ∴ c2(a2 -b2 )-(a2 +b2)(a2 -b2)=0 
    ∴ 〔c2-(a2 +b2)〕(a2 -b2)=0
    ∴ c2 - a2 -b2=0 或 (a2 -b2)=0 。
  又 a 、b、c 是三角形的边
    ∴c2 = a2 +b2 或 a2 =b2或c2 = a2 +b2 且 a2 =b2
    ∴ △ABC是直角三角形或等腰三角形或等腰直角三角形。

更多内容推荐