已知数列{an}和{bn}满足:a1=λ,其中λ为实数,n为正整数.(1)对任意实数λ,证明数列{an}不是等比数列;(2)试判断数列{bn}是否为等比数列,并证明你的结论;(3)设0<a<b,Sn为
已知数列{an}和{bn}满足:a1=λ,其中λ为实数,n为正整数.(1)对任意实数λ,证明数列{an}不是等比数列;(2)试判断数列{bn}是否为等比数列,并证明你的结论;(3)设0<a<b,Sn为数列{bn}的前项n和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
题目简介
已知数列{an}和{bn}满足:a1=λ,其中λ为实数,n为正整数.(1)对任意实数λ,证明数列{an}不是等比数列;(2)试判断数列{bn}是否为等比数列,并证明你的结论;(3)设0<a<b,Sn为
题目详情
已知数列{an}和{bn}满足:a1=λ,
其中λ为实数,n为正整数.
(1)对任意实数λ,证明数列{an}不是等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论;
(3)设0<a<b,Sn为数列{bn}的前项n和.是否存在实数λ,使得对任意正整数n,都有a<
Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
答案
即
所以{an}不是等比数列.
(Ⅱ)解:因为bn+1=(-1)n+1[an+1-3(n-1)+21]
=(-1)n+1(
又b1x-(λ+18),所以当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列:
当λ≠-18时,b1=(λ+18) ≠0,
由上可知bn≠0,∴
故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-
(Ⅲ)由(Ⅱ)知,当λ=-18,bn=0,Sn=0,不满足题目要求.
∴λ≠-18,故知bn= -(λ+18)·(-
于是可得Sn=-
要使a<Sn<b对任意正整数n成立,即a<-
令
∴f(n)的最大值为f(1)=
于是,由①式得
当a<b
当b>3a存在实数λ,使得对任意正整数n,都有a<Sn< b.