设实数x,y,z适合9x3=8y3=7z3,9x+8y+7z=1,则3(9x)2+(8y)2+(7z)2=______,9(9x2)4+(8y2)4+(7z2)4=______.-数学

题目简介

设实数x,y,z适合9x3=8y3=7z3,9x+8y+7z=1,则3(9x)2+(8y)2+(7z)2=______,9(9x2)4+(8y2)4+(7z2)4=______.-数学

题目详情

设实数x,y,z适合9x3=8y3=7z3
9
x
+
8
y
+
7
z
=1
,则
3(9x)2+(8y)2+(7z)2
=______,
9(9x2)4+(8y2)4+(7z2)4
=______.
题型:填空题难度:偏易来源:不详

答案

设9x3=8y3=7z3=k3,则
x=class="stub"k
39
,y=class="stub"k
38
,z=class="stub"k
37

从而1=class="stub"9
x
+class="stub"8
y
+class="stub"7
z
=class="stub"1
k
(9
39
+8
38
+7
37
),
故k=9
39
+8
38
+7
37

3(9x)2(8y)2+(7z)2

=
3k2(
394
+
384
+
374
)  

=
3k3

=k,
9(9x2)4+(8y2)4+(7z2)4

=
9k8(
394
+
384
+
374
)  

=
9k8k

=k.
故答案为:9
39
+8
38
+7
37
9
39
+8
38
+7
37

更多内容推荐