两根可以滑动的金属杆MN、PQ,套在两根竖直光滑轨道上,放置在匀强磁场中,磁场方向垂直导轨平面(纸面)向里,两金属杆MN、PQ的长均为20cm,质量均为0.12kg,电阻均为0.1Ω,-物理

题目简介

两根可以滑动的金属杆MN、PQ,套在两根竖直光滑轨道上,放置在匀强磁场中,磁场方向垂直导轨平面(纸面)向里,两金属杆MN、PQ的长均为20cm,质量均为0.12kg,电阻均为0.1Ω,-物理

题目详情

两根可以滑动的金属杆MN、PQ,套在两根竖直光滑轨道上,放置在匀强磁场中,磁场方向垂直导轨平面(纸面)向里,两金属杆MN、PQ的长均为20cm,质量均为0.12kg,电阻均为0.1Ω,导轨电阻不计.用长0.5m的绝缘细线OO′将两金属杆相连,如图所示.
(1)保持回路MNQP的面积不变,当磁场的磁感应强度以2T/s的变化率均匀减小时,求回路中感应电流的大小.
(2)保持磁场的磁感应强度1T不变,将细线OO′剪断,同时用外力使金属杆MN以5m/s的速度竖直向上作匀速运动,试问金属杆PQ最终向什么方向以多大的速度做匀速运动?(设在竖直方向上轨道足够长,磁场范围足够大)360优课网
题型:问答题难度:中档来源:宝山区一模

答案


(1)利用法拉第电磁感应定律E=class="stub"△φ
△t

得,E=class="stub"△B
△t
S

代入已知量,得E=2×0.5×0.2=0.2V
I=class="stub"E
R
=class="stub"0.2
0.2
=1A

(2)假设PQ向下匀速运动
对于MN、PQ两棒反向匀速切割磁感线的运动,有E'=BL(v1+v2),
I′=class="stub"E′
R

F'=BI'L,
F′=
B2L2(v1+v2)
R

对于PQ棒的平衡状态,有F'=G,
B2L2(v1+v2)
R
=G

代入已知量,得
12×0.22×(5+v2)
0.1+0.1
=1.2

解得v2=1m/s
答:(1)保持回路MNQP的面积不变,当磁场的磁感应强度以2T/s的变化率均匀减小时,则回路中感应电流的大小为1A.
(2)保持磁场的磁感应强度1T不变,将细线OO′剪断,同时用外力使金属杆MN以5m/s的速度竖直向上作匀速运动,则金属杆PQ最终向下方向以1m/s的速度做匀速运动.

更多内容推荐