如图所示,一辆质量为1.5kg的小车静止在光滑水平面上,一个质量为0.50kg的木块,以2.0m/s的速度水平滑上小车,最后与小车以相同的速度运动.小车上表面水平,木块与车上表-物理

题目简介

如图所示,一辆质量为1.5kg的小车静止在光滑水平面上,一个质量为0.50kg的木块,以2.0m/s的速度水平滑上小车,最后与小车以相同的速度运动.小车上表面水平,木块与车上表-物理

题目详情

如图所示,一辆质量为1.5kg的小车静止在光滑水平面上,一个质量为0.50kg的木块,以2.0m/s的速度水平滑上小车,最后与小车以相同的速度运动.小车上表面水平,木块与车上表面的动摩擦因数是0.20.g取10m/s2,求
(1)木块与小车共同运动的速度的大小;
(2)木块在小车上相对滑行的时间;
(3)设小车与光滑水平面足够长,若水平面右端也有一高度与左端一样的平台,且小车与两边平台碰撞过程中均没有能量损失,求从木块滑上小车开始到木块与小车第n共同运动的时间及木块在小车上滑行的路程.360优课网
题型:填空题难度:中档来源:不详

答案

(1)根据运动过程中动量守恒得:
mv0=(M+m)v1
解得:v1=class="stub"m
M+m
v0
=0.5m/s
(2)根据动量定理得:
μmgt=Mv1-0
t1=
Mv0
(M+m)μg
=0.75s
(3)若M>m,从第一次木板以v1反弹开始,有
Mv1-mv1=(M+m)v2
Mv2-mv2=(M+m)v3…
Mvn-1-mvn-1=(M+m)vn
解得:
v2=class="stub"M-m
M+m
v
1

v3=class="stub"M-m
M+m
v
2


vn=class="stub"M-m
M+m
v
n-1
=(class="stub"M-m
M+m
)
n-1
class="stub"m
M+m
v
0

根据动能定理得:
μmgx1=class="stub"1
2
mv02-class="stub"1
2
(M+m)v12

μmgx2=class="stub"1
2
mv12-class="stub"1
2
(M+m)v22


μmgxn=class="stub"1
2
mvn2-class="stub"1
2
(M+m)vn-12

解得:
x1=class="stub"M
2μg(M+m)
v
0
2

x2=class="stub"2M
μg(M+m)
v
1
2

x3=class="stub"2M
μg(M+m)
v
2
2
=class="stub"2M
μg(M+m)
(class="stub"M-m
M+m
)
2
v
1
2


xn=class="stub"2M
μg(M+m)
v
n-1
2
=class="stub"2M
μg(M+m)
(class="stub"M-m
M+m
)
2(n-2)
v
1
2


x2,x3,x4,…xn是一个首项为class="stub"2M
μg(M+m)
v21

公比为(class="stub"M-m
M+m
)
2
的等比数列,共有n-1项
Sn=x1+class="stub"2M
μg(M+m)
v21
n










n=2
(class="stub"M-m
M+m
)
2(n-2)

=x1+class="stub"2M
μg(M+m)
v21
1-(class="stub"M-m
M+m
)
2(n-1)
1-(class="stub"M-m
M+m
)
2

=class="stub"M
2μg(M+m)
v20
+class="stub"2M
μg(M+m)
v21
1-(class="stub"M-m
M+m
)
2(n-1)
1-(class="stub"M-m
M+m
)
2

=class="stub"M
2μg(M+m)
v20
+class="stub"2M
μg(M+m)
(class="stub"m
M+m
)
2
v20
1-(class="stub"M-m
M+m
)
2(n-1)
1-(class="stub"M-m
M+m
)
2

=
M
v20
2μg(M+m)
+
m
v20
2μg(M+m)
•[1-(class="stub"M-m
M+m
)
2(n-1)
]

在板上滑行的时间(不包含从共速至与平台碰撞的时间)
-μmgt2=Mv2-Mv1
-μmgt3=Mv3-Mv2…
-μmgtn=Mvn-Mvn-1
t2=class="stub"2M
μg(M+m)
v
1

t3=class="stub"2M
μg(M+m)
v
2
=class="stub"2M
μg(M+m)
 
class="stub"M-m
M+m
v
1

tn=class="stub"2M
μg(M+m)
v
n-1
=tn=class="stub"2M
μg(M+m)
 
•(class="stub"M-m
M+m
)
n-2
v
1


t2,t3,t4,…tn是一个首项为class="stub"2M
μg(M+m)
v1
公比为 (class="stub"M-m
M+m
)
的等比数列,共有n-1项
tn=t1+class="stub"2M
μg(M+m)
v1
n










n=2
(class="stub"M-m
M+m
)
n-2
=t1+class="stub"2M
μg(M+m)
v1
1-(class="stub"M-m
M+m
)
(n-1)
1-(class="stub"M-m
M+m
)

=
Mv0
(M+m)μg
+class="stub"2M
μg(M+m)
v1
1-(class="stub"M-m
M+m
)
(n-1)
1-(class="stub"M-m
M+m
)

=
Mv0
(M+m)μg
+class="stub"2M
μg(M+m)
•class="stub"m
M+m
v0
1-(class="stub"M-m
M+m
)
(n-1)
1-(class="stub"M-m
M+m
)

=
Mv0
μg(M+m)
•[2-(class="stub"M-m
M+m
)
(n-1)
]

同理可得:若M<m,
x2,x3,x4,…xn是一个首项为 class="stub"2M
μg(M+m)
v21

公比为(class="stub"m-M
m+M
)
2
的等比数列,
共有n-1项
Sn=x1+class="stub"2M
μg(M+m)
v21
n










n=2
(class="stub"m-M
m+M
)
2(n-2)

=x1+class="stub"2M
μg(M+m)
v21
n










n=2
(class="stub"m-M
m+M
)
2(n-2)

=class="stub"M
2μg(M+m)
v20
+class="stub"2M
μg(M+m)
v21
1-(class="stub"m-M
m+M
)
2(n-1)
1-(class="stub"m-M
m+M
)
2

=class="stub"M
2μg(M+m)
v20
+class="stub"2M
μg(M+m)
(class="stub"m
M+m
)
2
v20
1-(class="stub"m-M
m+M
)
2(n-1)
1-(class="stub"m-M
m+M
)
2

=
M
v20
2μg(M+m)
+
m
v20
2μg(M+m)
•[1-(class="stub"m-M
m+M
)
2(n-1)
]

在板上滑行的时间(不包含从共速至与平台碰撞的时间)
-μmgt2=mv2-mv1
-μmgt3=mv3-mv2

-μmgtn=mvn-mvn-1
t2=class="stub"2m
μg(m+M)
 
v1
t2=class="stub"2m
μg(m+M)
 
v
2
=class="stub"2m
μg(m+M)
 
•class="stub"m-M
m+M
v1
所以tn=class="stub"2m
μg(m+M)
 
v
n-1
=class="stub"2m
μg(m+M)
 
•(class="stub"m-M
m+M
)
n-2
v1

t2,t3,t4,…tn是一个首项为class="stub"2m
μg(m+M)
v1
,公比为 (class="stub"m-M
m+M
)
的等比数列,共有n-1项
tn=t1+class="stub"2m
μg(m+M)
v1
n










n=2
(class="stub"m-M
m+M
)
n-2
=t1+class="stub"2m
μg(m+M)
v1
1-(class="stub"m-M
m+M
)
(n-1)
1-(class="stub"m-M
m+M
)

=
Mv0
(M+m)μg
+class="stub"2m
μg(m+M)
v1
1-(class="stub"m-M
m+M
)
(n-1)
1-(class="stub"m-M
m+M
)

=
Mv0
(M+m)μg
+class="stub"2m
μg(m+M)
•class="stub"m
M+m
v0
1-(class="stub"m-M
m+M
)
(n-1)
1-(class="stub"m-M
m+M
)

=
Mv0
(M+m)μg
+
m2v0
μgM(m+M)
•[1-(class="stub"m-M
m+M
)
(n-1)
]

答:(1)木块与小车共同运动的速度的大小为0.5m/s;
(2)木块在小车上相对滑行的时间为0.75s;
(3)从木块滑上小车开始到木块与小车第n共同运动的时间为
Mv0
μg(M+m)
•[2-(class="stub"M-m
M+m
)
(n-1)
]
Mv0
(M+m)μg
+
m2v0
μgM(m+M)
•[1-(class="stub"m-M
m+M
)
(n-1)
]
,木块在小车上滑行的路程为
M
v20
2μg(M+m)
+
m
v20
2μg(M+m)
•[1-(class="stub"M-m
M+m
)
2(n-1)
]
M
v20
2μg(M+m)
+
m
v20
2μg(M+m)
•[1-(class="stub"m-M
m+M
)
2(n-1)
]

更多内容推荐